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Figure 1: Through practice and patience, a glassblower develops an
intuition of the temperature of glass on the rod. While shapeable in its
molten state (above 1050 ℉), the glass can quickly cool and can shatter if
it falls below 750 ºF. We explore how an AI model can support
glassblowers in predicting the temperature state of the glass.

Introduction
Integrating sensor-driven AI interactions within makerspaces
is a challenge, especially since spaces are continuously
evolving, requiring AI models to be resilient against model
degradation, data shifts [2], target shifts, and changes in
environmental conditions. Within creative spaces,
embedding AI models through conventional user interfaces
(desktop, GUI) can introduce a tether that limits the fluidity
of motion and actions inherent in physical practices [1]. In
order to work towards the concept of a smart makerspace,
we need to understand how human-AI interactions can be
embedded into creative physical environments [3]. In this
work, we foreground how spatial analyses can be used to
design for natural, intuitive, and collaborative spatial
interactions. In the context of glassblowing, we describe our

Figure 2: The rail can be divided into 10 zones, each 2.4 inches in length.
Zone 1 is the closest zone on the bench, while zone 10 is the furthest.

Figure 3: To capture the data necessary to train our ShatterModel, we
used a setup of two cameras and two pyromaters each capturing different
angles of the glass. The glass shop forms a adverse environment for
technology: (1) the furnace operates in temperatures well outside
technology operating ranges; (2) the tools and workbench change their
position daily; (3) every space is critical to glassblowing – with just a few
cameras and pyrometers set up, much of the usable space is taken up.

proxemics-based approach where we first study a
glassblower’s motions and activity in space to delineate
regions of interaction. We demonstrate how an AI model
that predicts the temperature state of glass, the
ShatterModel, can be designed to integrate within the natural
glassblowing process. In conducting our work within a hot
glass shop, we show how proxemic analysis is effective in
designing intuitive human-AI interactions that are able to be
integrated within technology-adverse environments.

Adverse Environments
Studying human-AI interactions in adverse environments is
useful for designing technology that is resilient and robust.
Our work in an academic hot glass shop typifies an adverse
environment (Fig. 3) and can serve to emulate the situations
encountered in other adverse makerspaces. Some notable
conditions include: 1) Shifts – Glassblowing is a creative
and expressive practice; the variety of shapes and



material-tool combinations make it difficult for models to
maintain their performance. New glassblowing tools,
layouts, and materials are introduced frequently; 2)
[Extreme Conditions] – The hands and body of a
glassblower are subjected to extreme heat from molten glass
1150 ℃ (2100 ℉), limiting the placement of worn or
environmental sensors; 3) [Purposeful Spaces] – The space
in the glass shop is very limited; every space has a specific
purpose, such as how glassblowers stand and move around
the bench, which is critical to spatial cognition; 4) [Cultural
Misalignment] – Digital technology, historically, is not part
of the glassblowing tradition. As a manual skilled practice,
glassblowing often requires 2-3 people to coordinate actions
using non-verbal cues.

Interaction Design Method
To meet the challenges of integrating AI within the hot glass
shop, we first experienced the glass shop through participant
observation. We later leveraged sensor ethnography methods
to analyze spatial movements; during this process, we
collected data to train our ShatterModel. The resulting
model was then deployed on a IoT sensor network and
feedback interactions were iteratively developed leveraging
the proxemics of a glassblower’s bench.

Spatial Analysis
In order to design an unobtrusive spatial interaction, we first
conducted a spatial analysis for understanding how
glassblowers move and act when blowing glass on a bench.
We recorded two experienced glassworkers forming a glass
cylinder; from this video, we segmented the rail on the
bench (Fig. 4) and divided the rail into 10 zones. We then
computed the frequency of rail-rod interactions that fell
within these respective zones. Using proxemic theory, we
assigned Zone 1 (closest to the glassblower), which was
used exclusively by the glassblower’s body, as the intimate
zone. Zones 2-7 had the most rod-rail interactions (Fig. 2),

Figure 4: The glassblower uses the rail to support their blowpipe while
rotating their piece. The rail can be split into two areas of spatial
interaction, a making zone and a social zone. The making zone houses the
majority of rotations, while the social zone is often used to communicate
with the assistant.

designating the making zone. Zones 8-10 were used to
coordinate actions with assistants and for entering and
exiting the bench, which we assign as the social zone.

Shatter Model
Creating the ShatterModel consisted of three steps, (1) data
gathering, (2) model training, and (3) model deployment. To
label the images, we used a pyrometer pointed at the molten
glass as it cooled (Fig. 3). Since the temperature read by the
pyrometer was displayed on a screen, we also trained a
YOLOv5 model on a dataset of 2000 7-segment digit images
to automate the labeling of individual frames. We trained a
convolutional neural network using 564 images, exactly like
what is seen in the white circle of Fig. 1, and split them
80/20 for the training set and the validation set. The F1 score
of the model we trained was 96%. Finally, we deployed our
model on a server connected to a camera. Then the camera
will look at the live glass to make its predictions.

Hot Spot Interaction
We are in the process of integrating the AI model with our
benchmarking proxemics. Our “hot spot” interaction
facilitates the glassblower prompting the AI model for
feedback by moving the glass rod past the making zone and
into the social zone. We argue that this interaction makes use
of a pre-existing communication system embedded within
the glassblowing process. The furthest part of the rail of the
bench as seen in Fig. 4, is often used as silent
communication between the gaffer (the person actively
working on the glass) and their assistant.

Evaluation
We have designed a user study with 2-5 glassblowers to
understand how placing the human-AI interaction within
different proxemic spaces affects a glassblower’s perception
of privacy and trust with the AI model. The study aims to
probe AI agent interaction in the intimate, making, and
social zone to validate the use of proxemics to design natural
interactions. We will collect self-report of comfort,
effectiveness, and qualitative feedback on their relationship
with the AI agent. Initial pilot studies indicate that the hot
spot interaction is well received.

Conclusion
We showcased how proxemics could be utilized to inspire
the design of a spatial human-AI interaction. Preliminary
findings suggest that this approach holds promise in
prompting AI intervention. However, we envision even
greater potential by delving into layered, deeper interactions
through the development of a comprehensive language of
spatial interactions, enabling practitioners to engage in
sustained conversations with AI agents. Although our focus
was on the glass shop domain, the principles of proxemics
we explored can be generalized to other makerspaces
confronting similar challenges in adverse environments. Our
approach serves as a valuable template for implementing AI
solutions in diverse makerspace settings, paving the way for
enhanced human-AI collaboration and problem-solving.
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